The useless folder contains four miscellaneous Python scripts, primarily for fetching stock data and performing linear regression.
Description: This script implements linear regression on synthetic data, visualizing the regression line and reporting metrics like MSE and R² score.
Dependencies: numpy
, matplotlib
, scikit-learn
Code Snippet:
import numpy as np import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression np.random.seed(42) X = 2 * np.random.rand(100, 1) y = 4 + 3 * X + np.random.randn(100, 1) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) model = LinearRegression() model.fit(X_train, y_train)